Copied to
clipboard

G = C42.157D6order 192 = 26·3

157th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.157D6, C6.312- 1+4, C6.1352+ 1+4, C12⋊Q838C2, C4⋊C4.114D6, C4.D1239C2, D6⋊Q837C2, C42.C213S3, C2.60(D4○D12), (C2×C6).243C24, D6⋊C4.43C22, C2.61(Q8○D12), C12.6Q830C2, D6.D4.4C2, (C4×C12).224C22, (C2×C12).190C23, C427S3.12C2, (C2×D12).36C22, Dic3⋊C4.86C22, C4⋊Dic3.245C22, C22.264(S3×C23), (C2×Dic6).41C22, (C22×S3).108C23, C2.32(Q8.15D6), C34(C22.57C24), (C2×Dic3).125C23, (C4×Dic3).148C22, C4⋊C4⋊S338C2, (S3×C2×C4).133C22, (C3×C42.C2)⋊16C2, (C3×C4⋊C4).198C22, (C2×C4).207(C22×S3), SmallGroup(192,1258)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.157D6
C1C3C6C2×C6C22×S3S3×C2×C4C4.D12 — C42.157D6
C3C2×C6 — C42.157D6
C1C22C42.C2

Generators and relations for C42.157D6
 G = < a,b,c,d | a4=b4=1, c6=d2=a2b2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c5 >

Subgroups: 496 in 196 conjugacy classes, 91 normal (31 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic6, C4×S3, D12, C2×Dic3, C2×C12, C2×C12, C22×S3, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42.C2, C422C2, C4⋊Q8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C4×C12, C3×C4⋊C4, C3×C4⋊C4, C2×Dic6, C2×Dic6, S3×C2×C4, C2×D12, C22.57C24, C12.6Q8, C427S3, C12⋊Q8, D6.D4, D6⋊Q8, C4.D12, C4⋊C4⋊S3, C3×C42.C2, C42.157D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, 2+ 1+4, 2- 1+4, S3×C23, C22.57C24, Q8.15D6, D4○D12, Q8○D12, C42.157D6

Smallest permutation representation of C42.157D6
On 96 points
Generators in S96
(1 56 34 40)(2 51 35 47)(3 58 36 42)(4 53 25 37)(5 60 26 44)(6 55 27 39)(7 50 28 46)(8 57 29 41)(9 52 30 48)(10 59 31 43)(11 54 32 38)(12 49 33 45)(13 65 86 82)(14 72 87 77)(15 67 88 84)(16 62 89 79)(17 69 90 74)(18 64 91 81)(19 71 92 76)(20 66 93 83)(21 61 94 78)(22 68 95 73)(23 63 96 80)(24 70 85 75)
(1 68 28 79)(2 80 29 69)(3 70 30 81)(4 82 31 71)(5 72 32 83)(6 84 33 61)(7 62 34 73)(8 74 35 63)(9 64 36 75)(10 76 25 65)(11 66 26 77)(12 78 27 67)(13 43 92 53)(14 54 93 44)(15 45 94 55)(16 56 95 46)(17 47 96 57)(18 58 85 48)(19 37 86 59)(20 60 87 38)(21 39 88 49)(22 50 89 40)(23 41 90 51)(24 52 91 42)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 24 19 18)(14 17 20 23)(15 22 21 16)(25 30 31 36)(26 35 32 29)(27 28 33 34)(37 52 43 58)(38 57 44 51)(39 50 45 56)(40 55 46 49)(41 60 47 54)(42 53 48 59)(61 79 67 73)(62 84 68 78)(63 77 69 83)(64 82 70 76)(65 75 71 81)(66 80 72 74)(85 92 91 86)(87 90 93 96)(88 95 94 89)

G:=sub<Sym(96)| (1,56,34,40)(2,51,35,47)(3,58,36,42)(4,53,25,37)(5,60,26,44)(6,55,27,39)(7,50,28,46)(8,57,29,41)(9,52,30,48)(10,59,31,43)(11,54,32,38)(12,49,33,45)(13,65,86,82)(14,72,87,77)(15,67,88,84)(16,62,89,79)(17,69,90,74)(18,64,91,81)(19,71,92,76)(20,66,93,83)(21,61,94,78)(22,68,95,73)(23,63,96,80)(24,70,85,75), (1,68,28,79)(2,80,29,69)(3,70,30,81)(4,82,31,71)(5,72,32,83)(6,84,33,61)(7,62,34,73)(8,74,35,63)(9,64,36,75)(10,76,25,65)(11,66,26,77)(12,78,27,67)(13,43,92,53)(14,54,93,44)(15,45,94,55)(16,56,95,46)(17,47,96,57)(18,58,85,48)(19,37,86,59)(20,60,87,38)(21,39,88,49)(22,50,89,40)(23,41,90,51)(24,52,91,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,24,19,18)(14,17,20,23)(15,22,21,16)(25,30,31,36)(26,35,32,29)(27,28,33,34)(37,52,43,58)(38,57,44,51)(39,50,45,56)(40,55,46,49)(41,60,47,54)(42,53,48,59)(61,79,67,73)(62,84,68,78)(63,77,69,83)(64,82,70,76)(65,75,71,81)(66,80,72,74)(85,92,91,86)(87,90,93,96)(88,95,94,89)>;

G:=Group( (1,56,34,40)(2,51,35,47)(3,58,36,42)(4,53,25,37)(5,60,26,44)(6,55,27,39)(7,50,28,46)(8,57,29,41)(9,52,30,48)(10,59,31,43)(11,54,32,38)(12,49,33,45)(13,65,86,82)(14,72,87,77)(15,67,88,84)(16,62,89,79)(17,69,90,74)(18,64,91,81)(19,71,92,76)(20,66,93,83)(21,61,94,78)(22,68,95,73)(23,63,96,80)(24,70,85,75), (1,68,28,79)(2,80,29,69)(3,70,30,81)(4,82,31,71)(5,72,32,83)(6,84,33,61)(7,62,34,73)(8,74,35,63)(9,64,36,75)(10,76,25,65)(11,66,26,77)(12,78,27,67)(13,43,92,53)(14,54,93,44)(15,45,94,55)(16,56,95,46)(17,47,96,57)(18,58,85,48)(19,37,86,59)(20,60,87,38)(21,39,88,49)(22,50,89,40)(23,41,90,51)(24,52,91,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,24,19,18)(14,17,20,23)(15,22,21,16)(25,30,31,36)(26,35,32,29)(27,28,33,34)(37,52,43,58)(38,57,44,51)(39,50,45,56)(40,55,46,49)(41,60,47,54)(42,53,48,59)(61,79,67,73)(62,84,68,78)(63,77,69,83)(64,82,70,76)(65,75,71,81)(66,80,72,74)(85,92,91,86)(87,90,93,96)(88,95,94,89) );

G=PermutationGroup([[(1,56,34,40),(2,51,35,47),(3,58,36,42),(4,53,25,37),(5,60,26,44),(6,55,27,39),(7,50,28,46),(8,57,29,41),(9,52,30,48),(10,59,31,43),(11,54,32,38),(12,49,33,45),(13,65,86,82),(14,72,87,77),(15,67,88,84),(16,62,89,79),(17,69,90,74),(18,64,91,81),(19,71,92,76),(20,66,93,83),(21,61,94,78),(22,68,95,73),(23,63,96,80),(24,70,85,75)], [(1,68,28,79),(2,80,29,69),(3,70,30,81),(4,82,31,71),(5,72,32,83),(6,84,33,61),(7,62,34,73),(8,74,35,63),(9,64,36,75),(10,76,25,65),(11,66,26,77),(12,78,27,67),(13,43,92,53),(14,54,93,44),(15,45,94,55),(16,56,95,46),(17,47,96,57),(18,58,85,48),(19,37,86,59),(20,60,87,38),(21,39,88,49),(22,50,89,40),(23,41,90,51),(24,52,91,42)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,24,19,18),(14,17,20,23),(15,22,21,16),(25,30,31,36),(26,35,32,29),(27,28,33,34),(37,52,43,58),(38,57,44,51),(39,50,45,56),(40,55,46,49),(41,60,47,54),(42,53,48,59),(61,79,67,73),(62,84,68,78),(63,77,69,83),(64,82,70,76),(65,75,71,81),(66,80,72,74),(85,92,91,86),(87,90,93,96),(88,95,94,89)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A···4G4H···4M6A6B6C12A···12F12G12H12I12J
order12222234···44···466612···1212121212
size1111121224···412···122224···48888

33 irreducible representations

dim11111111122244444
type+++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2S3D6D62+ 1+42- 1+4Q8.15D6D4○D12Q8○D12
kernelC42.157D6C12.6Q8C427S3C12⋊Q8D6.D4D6⋊Q8C4.D12C4⋊C4⋊S3C3×C42.C2C42.C2C42C4⋊C4C6C6C2C2C2
# reps11122224111612222

Matrix representation of C42.157D6 in GL8(𝔽13)

00100000
00010000
120000000
012000000
00000010
00000001
000012000
000001200
,
01000000
120000000
00010000
001200000
000011400
00009200
000000114
00000092
,
60030000
07300000
010600000
100070000
00000008
00000058
00000800
00005800
,
60030000
061000000
03700000
100070000
00000058
00000008
00005800
00000800

G:=sub<GL(8,GF(13))| [0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,11,9,0,0,0,0,0,0,4,2,0,0,0,0,0,0,0,0,11,9,0,0,0,0,0,0,4,2],[6,0,0,10,0,0,0,0,0,7,10,0,0,0,0,0,0,3,6,0,0,0,0,0,3,0,0,7,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,8,8,0,0,0,0,0,5,0,0,0,0,0,0,8,8,0,0],[6,0,0,10,0,0,0,0,0,6,3,0,0,0,0,0,0,10,7,0,0,0,0,0,3,0,0,7,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,8,8,0,0,0,0,5,0,0,0,0,0,0,0,8,8,0,0] >;

C42.157D6 in GAP, Magma, Sage, TeX

C_4^2._{157}D_6
% in TeX

G:=Group("C4^2.157D6");
// GroupNames label

G:=SmallGroup(192,1258);
// by ID

G=gap.SmallGroup(192,1258);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,758,219,268,1571,570,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽